Variational Autoencoders for Learning Latent Representations of Speech Emotion
نویسندگان
چکیده
Learning the latent representation of data in unsupervised fashion is a very interesting process that provides relevant features for enhancing the performance of a classifier. For speech emotion recognition tasks, generating effective features is crucial. Currently, handcrafted features are mostly used for speech emotion recognition, however, features learned automatically using deep learning have shown strong success in many problems, especially in image processing. In particular, deep generative models such as Variational Autoencoders (VAEs) have gained enormous success for generating features for natural images. Inspired by this, we propose VAEs for deriving the latent representation of speech signals and use this representation to classify emotions. To the best of our knowledge, we are the first to propose VAEs for speech emotion classification. Evaluations on the IEMOCAP dataset demonstrate that features learned by VAEs can produce state-of-the-art results for speech emotion classification.
منابع مشابه
Learning Latent Representations for Speech Generation and Transformation
An ability to model a generative process and learn a latent representation for speech in an unsupervised fashion will be crucial to process vast quantities of unlabelled speech data. Recently, deep probabilistic generative models such as Variational Autoencoders (VAEs) have achieved tremendous success in modeling natural images. In this paper, we apply a convolutional VAE to model the generativ...
متن کاملLearning Representations of Affect from Speech
There has been a lot of prior work on representation learning for speech recognition applications, but not much emphasis has been given to an investigation of effective representations of affect from speech, where the paralinguistic elements of speech are separated out from the verbal content. In this paper, we explore denoising autoencoders for learning paralinguistic attributes, i.e. categori...
متن کاملStick-breaking Variational Autoencoders
We extend Stochastic Gradient Variational Bayes to perform posterior inference for the weights of Stick-Breaking processes. This development allows us to define a Stick-Breaking Variational Autoencoder (SB-VAE), a Bayesian nonparametric version of the variational autoencoder that has a latent representation with stochastic dimensionality. We experimentally demonstrate that the SB-VAE, and a sem...
متن کاملUnsupervised learning of phase transitions: from principal component analysis to variational autoencoders
We examine unsupervised machine learning techniques to learn features that best describe configurations of the two-dimensional Ising model and the three-dimensional XY model. The methods range from principal component analysis over manifold and clustering methods to artificial neural-network-based variational autoencoders. They are applied to Monte Carlo-sampled configurations and have, a prior...
متن کاملDenoising Adversarial Autoencoders
Unsupervised learning is of growing interest because it unlocks the potential held in vast amounts of unlabelled data to learn useful representations for inference. Autoencoders, a form of generative model, may be trained by learning to reconstruct unlabelled input data from a latent representation space. More robust representations may be produced by an autoencoder if it learns to recover clea...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1712.08708 شماره
صفحات -
تاریخ انتشار 2017